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Abstract— The problem of identifying Wiener-Hammerstein

systems is proposed in the presence of hard nonlinearity. Wiener-
Hammerstein systems consist of a series connection including a
nonlinear element sandwiched with two linear subsystems. Presently,
the two linear subsystems are allowed to be nonparametric and
structure entirely unknown, but are supposed asymptotically stable.
Furthermore, the system nonlinearity is of hard type and no knowledge
is priori required. Interestingly, the system nonlinearity is separately
identified first. In turn, the linear subsystems are identified in the
second stage using a frequency approach.

Keywords—Hard nonlinearity, frequency system identification,
Wiener models, Hammerstein models, Wiener-Hammerstein systems.

I. INTRODUCTION

The problem of system identification based on different
variants of the Wiener-Hammerstein model has been given a
great deal of interest, especially on the last decade, and several
solutions are now available. Wiener-Hammerstein models
consist of a series connection including a nonlinear static
element sandwiched with two linear subsystems (Fig. 1).
Accordingly, this structure of models can be viewed as a
generalization of Hammerstein and Wiener models and so it is
expected to feature a superior modeling capability. This has
been confirmed by several practical applications e.g. paralyzed
skeletal muscle dynamics [1]. As a matter of fact,
Hammerstein-Wiener systems are more difficult to identify
than the simpler Wiener and Hammerstein systems [2].

Note that, the internal signals: v(t), w(t), x(t) and ξ(t) are not
accessible to measurements. The only measurable signals are
the system input u(t) and output y(t).

In view of these difficulties, it is not surprising that few
solutions are available that deal with Wiener-Hammerstein
system identification.

The available methods have been developed following three
main approaches i.e. iterative nonlinear optimization
procedures [3]; stochastic methods e.g. [4], [5]; frequency
methods e.g. [6], [7].

Fig. 1 Wiener-Hammerstein Model structure

A. Brouri is with the ENSAM-Meknes, Moulay Ismail University, L2MC,
AEEE, Morocco (e-mail: a.brouri@ensam-umi.ac.ma).

In this paper, a frequency-domain identification scheme is
designed for Wiener-Hammerstein systems involving two
linear subsystems (asymptotically stable) of entirely unknown
structure, unlike many previous works. Furthermore, the static
nonlinearity is of hard type (Fig. 2), it’s also of unknown
structure and is not required to be invertible. The system
nonlinearity can have several effects [7]. Given the system
nonparametric nature, the identification problem is presently
dealt with by developing a two-stage frequency identification
method, involving periodic inputs.

First, the identification of system nonlinearity can be
achieved by using a set of constant points. Then, the linear
subsystems can be dealt by developing a frequency
identification method, using simple sine inputs. An accurate
estimates of complex gain (gain modulus and phase) can be

determined, for any frequency  1; ... ;k m   .

The outline of the remaining part of this paper consists of 4
sections. The identification problem is formally described in
Section II. The identification of the nonlinearity is coped with
in Section III. the identification of the linear subsystems is dealt
with in Section IV.

Fig. 2 Example of hard nonlinearity

II.IDENTIFICATION PROBLEM STATEMENT

We are interested in systems that can be described by the
Wiener-Hammerstein structure (Fig. 1) with hard nonlinearity
(Fig. 2). The above model is analytically described by the
following equations:

( ) ( ) * ( )iv t g t u t (1a)
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   ( ) ( )* ( )( ) iv t g t u tw t f f  (1b)

 ( )( ) ( ) * ( ) ( ) ( ) * ( )
o o

v ty t g t w t t g t f t     (1c)

where  1( ) ( )i ig t L G s and  1( ) ( )o og t L G s are the inverse

Laplace transform of ( )iG j and ( )oG j (respectively);
* refers to the convolution operation. The linear subsystems are
supposed to be asymptotically stable with non-null static gain.
For a problem of identifiability, at least one of these segments
has nonzero slope. The external noise ( )t is supposed to be a
zero-mean stationary sequence of independent random
variables and ergodic.

The problem complexity also lies in the fact that the internal
signals are not uniquely defined from an input-output
viewpoint. In effect, if  ( ), ( ), ( )i oG s f v G s is representative of

the system then, any model of the form
 1 2 1 2( ) /  ,  ( ) ,  ( ) /i oG s k k f k v G s k is also representative

whatever the real numbers 1 0k  and 2 0k  . In the present
study, we assume that: (0) 0iG  and (0) 0oG  . To get benefit
from models plurality, it is judicious to take:

1 (0)ik G and 2 (0)ok G (2)

Accordingly, without loss of generality, the model to be
identified is described by the following equations:

( )( ) (0)
i

i
i

G sG s G
and ( )( ) (0)

o

o
o

G sG s G
(3a)

 ( ) (0) (0)o if x G f G x (3b)

The considered model is characterized by unit static gains, i.e.

the system (3a-b) satisfy the properties: (0) (0) 1.i oG G 

On the other hand, to avoid the use of several notations, the
system to be identified will be noted  ( ), ( ), ( )i oG s f v G s . It is

interesting to note that, the hard nature of nonlinearity makes
its orthogonal polynomials series approximation not too
suitable. To capture discontinuities, one needs too large series
troncature degree (Fig. 3). Besides, the suitable degree is not
easy to select because the shape of the N.L is a priori unknown.
Let approximate an example of hard nonlinearity f(v) with

series expansion for various degrees m:
1

( )
m

i
i

i
f v v



 (Fig.

3). Then, a large values of m are necessary to conveniently
capture f(v). Accordingly, the suitable values of m depend on
f(.) which is unknown.

Fig. 3 Hard element compared with series expansion of degree m

III. IDENTIFICATION OF SYSTEM NONLINEARITY

In this section, we are interest to develop the nonlinear
system identification. The Wiener-Hammerstein system is
excited with piecewise constant signal. When the system is
successively excited by a set of constant inputs

 1( ) ; ; Nu t U U  , then the steady state of the internal signal

v(t) takes N constant values. It follows (1a) and (3a), v(t) can
be expressed as follows:

 1( ) ; ; Nv t U U  (4)

where the number N is arbitrarily chosen by the user. Then, it
is readily obtained from (1b), (4) and (3a-b) that, the steady-
state internal signal w(t) can simply be expressed as follows:

    1( ) ; ; NU Uw t f f  (5)

Then, as the linear subsystem ( )oG s is asymptotically stable
with unit static gain, it is readily obtained from (1c), (3a-b) and
(5) that, the steady state undisturbed output x(t) takes N
constant values, that can be expressed as follows:

    1( ) ; ; NU Ux t f f  (6)

On the other hand, using the fact ( ) ( ) ( )y t t tx   and
(6), the steady state the system output y(t) can expressed as:

 ( ) ( )   where  1; ;j jY f U t j N    (7)

Then, as the system is asymptotically stable, its step
undisturbed response settles down (i.e. gets very close to final
value) after a transient period.

Finally, notice that the steady-state undisturbed output
( )j jX f U ( 1 )j N  can simply be estimated using the
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fact that ( ) ( ) ( )y t x t t  and ( )t is zero-mean.

Specifically, ( 1 )jX j N  can be recovered by averaging

y(t) on a sufficiently large interval.

( 1)

1ˆ ( ) ( ) for   1, ,
jMT

j MT

r

r
j

r
X M y t dt j N

NT 
   (8)

where Tr is theoretically any positive real number.
Practically, it is convenient to let Tr be comparable to the system
rise time i.e. the time that is necessary for a system step
response to reach 95% of its final value.

Hence, a number of points of the nonlinear function f(.) can
thus be accurately estimated. Then, the set of couples

   ˆˆ ( ) ( ), ,j j j jL
U X L U f U ( 1 )j N  , where ˆ ( )jL

f U

designates the estimate of ( )jf U , are estimates of N points all

belonging to the nonlinear function f(.). This yields the
following statement:

Proposition 1. The couple of points  ˆ ( ),j jU X L , for

1j N  , determined in the Nonlinearity Estimator, converge
(in probability) to the trajectory of f(.).
Proof. First, recall that, as the linear subsystems are

asymptotically stable, the unit response of system settles down
i.e. gets very close to its final value after a transient regime.

Using the rescaling model (3a-b) of Wiener-Hammerstein
systems, the steady state undisturbed output depends only on
the system nonlinearity f(.).
The Nonlinearity Estimator was shown to be consistent in [8]
i.e.:

ˆ ( )lim j jL
X L X


 for all 1j N  (9)

Then, it is readily obtained from (6) and (9), the set of couples

 ˆ ( ),j jU X L ( 1j N  ) converge (in probability) to

  ,j jUU f , for 1j N  . This establishes and completes

the proof of Proposition 1.

Remark 1. If the Wiener-Hammerstein system is excited
with constant inputs, the resulting system in the steady state
boils down to the linearity part f(.) (see Proposition 1). As a
matter of fact, a set of points of the nonlinearity is identified
(Fig. 4). Likewise, knowing that the nonlinearity f(.) is of hard
type, then it can be accurately estimated (Fig. 4). If necessary,
the system can be excited by other points.

Fig. 4 Example of obtained points  ( ),j jU f U

IV. LINEAR SUBSYSTEMS IDENTIFICATION

In this section, a frequency identification method is proposed
to obtain estimates of the complex gain corresponding to the
two linear subsystems ( )iG j and ( )oG j for a set of

frequencies  1; ... ; m  . For simplicity, we presently

suppose that the nonlinearity estimator, established in section
III, have been exactly determined.

The frequency identification approach that is proposed in this
section relies on the investigation of the system response to sine
excitations. The identification problem under study is dealt
using a method based on the frequency approach. For a set of a
priori chosen frequencies )...1( mk  . The Wiener-
Hammerstein system is excited with a given sine input:

( ) sin( )o ku t u U t  (10)

where the frequency 0k  is kept constant, ou is the offset
and U the amplitude of sine signal. The choice of couple of

parameters  ,ou U will be made after.

On the other hand, it is supposed first that the input signal
u(t) in (4) is chosen such that v(t) spans only one segment of f(.)
having a nonzero slope. Then, as the linear subsystem ( )iG s is
asymptotically stable, it follows from (3a)-(10) that the internal
signal v(t), in steady state, is of the form:

( ) ( ) sin( ( ))o i k k i kv t u U G j t      (11)

where  ( ) arg ( )i iG j   . If v(t) spans only the chosen

segment, then the internal signals v(t) and w(t) are related by a
linear relationship:

N.L to be identified

Set of points (U ,X )jj

INTERNATIONAL JOURNAL OF GEOLOGY Volume 10, 2016

ISSN: 1998-4499 31



* *( ) ( )w t S v t P  (12)

where *S is the slope of segment l and *P is the value of w(t)
when ( ) 0v t  . Thereafter, from (11)-(12), the internal signal
w(t) is written in the following form:

* * *( ) ( ) sin( ( ))i k k i k ow t US G j t S u P       (13)

As the linear subsystem ( )oG s is asymptotically stable, it
follows from (13) that, the steady state undisturbed output x(t)
can be expressed as follows:

 *

* *

( ) ( ) ( ) sin ( ) ( )i k o k k i k o k

o

x t US G j G j t

S u P

        

 
(14)

where  ( ) arg ( )o oG j   . Finally, as ( ) ( ) ( )y t x t t  , one
immediately gets from (14):

 *

* *

( ) ( ) ( ) sin ( ) ( )

          ( )
i k o k k i k o k

o

y t US G j G j t

S u P t

      



  

  
(15)

On the other hand, let define the variables for any ω:

( ) ( ) ( )i o       (16a)

( ) ( ) ( )i oG j G j G j   (16b)

0
* *

oy S u P  (16c)

Then, from (15)-(16c), it is readily seen that the output
system y(t) can be rewritten in the following form:

  0
*( ) ( ) sin ( ) ( )k k ky t US G j t y t        (17)

Notice that that, the steady state undisturbed output x(t) is a
sin signal. Furthermore, the system output y(t) becomes sine or
constant signal (up to noise) after a transient period.

On the other hand, a judicious choice of the couple

 ,ou U in (10) can be performed using the experimental data

of nonlinearity estimator, established in section III. Based upon
the curve of the nonlinearity f(.), let choose any segment l of f(.)
with nonzero slope (Fig. 4). Then, the identified system is
submitted to the sine input (10) within the selected segment.

The component ou can take any value close to the center.
Regarding the choice of the amplitude U in (10), if v(t) spans

only one segment, the system output y(t) becomes sine signal
(up to noise) after a transient period. The amplitude 0U  is
initialized to a small value. Then, the steady state system is sine
signal. The amplitude may be increased to obtain a sufficient
output signal, but it must keep the sine form. The amplitude U
can be reduced if necessary.

On the other hand, let ( )ks  the amplitude of the sinusoidal
part of ( )x t and ( )k  its phase. Getting benefit from (14)-
(17), one key idea is to determine the gain modulus

( ) ( ) ( )k i k o kG j G j G j   and the phase

( ) ( ) ( )k i k o k       . Then, using (14)-(17), it is readily
seen that:

*

( )( ) k
k

sG j
S U
  (18)

Knowing the sign of *S , the phase ( )k  can be recovered
modulo 2π. Let us consider the parameter  defined as follows:

0  if  *sign( ) sign ( )kS s  else 1  (19)

Then, ( )k  and ( )k  are linked by the following
relationship:

( ) ( )k k      (modulo 2π) (20)

Equations (18)-(19) shown that the gain modulus ( )kG j

and the phase ( )k  can be accurately determined. The
difficulty here resides in the fact that (18)-(20) are currently
established based on the signal ( )x t which is not accessible to
measurement. This is presently coped with making full use of
the information at hand, namely the periodicity (with period

k /2 ) of both ( )u t and ( )x t and the ergodicity of the noise

( )t . Bearing these in mind, the relation ( ) ( ) ( )y t x t t 
suggests the following estimator of ( )x t :

1

1ˆ( , ) ( )
M

k
j

x t M y t jT
M 

  ; [0, )kt T (21a)

ˆ ˆ( , ) ( , )kx t jT M x t M  for any integer 0j  (21b)

where 2 /k kT   and M is a sufficiently large integer.
Specifically, for a fixed time instant t, the quantity ˆ( , )x t M
turns out to be the mean value of the (measured) sequence
 ( );  0  1 ...ky t jT j  .

On the other hand, Let ˆ ( )M ks  denotes the estimate of

( )ks  . Then, an estimate  ˆˆ ( ), ( )M k M kG j   of
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 ( ), ( )k kG j   can be determined, one has thus, for any

frequency k :

*, ,ˆ ˆ ˆ( ) ( ) ( )M k i k o kM M           (modulo 2π) (22a)

*, ,
ˆ ( )ˆ ˆ ˆ( ) ( ) ( ) M k

M k i k o kM M
sG j G j G j

S U
    (22b)

Then, these remarks lead to the following proposition:

Proposition 2. Consider the identification problem
statement. Then, one has:
1) The undisturbed output estimate ˆ( , )x t M Converges in
probability to ( )x t as M  .

2) The frequency complex gain ˆ ( )M kG j Converges in

probability to ( )kG j as M   (gain modulus and phase
estimates converge to their true value).
Proof. As ( ) ( ) ( )y t x t t  and using the fact that ( )x t is

periodic with period kT , it follows that for all [0, )kt T and all
integers j: ( ) ( ) ( )k ky t jT x t t jT    , which in turn implies
that for all [0, )kt T :

1 1

1 1ˆ( , ) ( ) ( ) ( )
M M

k k
j j

x t M y t jT x t t jT
M M


 

      (23)

Since ( )t is zero mean and ergodic, the last term on the right
side vanishes w.p.1 as M   . This proves Part 1 of the
proposition.
To prove Part 2, using Part 1, one immediately gets:

ˆ ( ) ( )M k kM
s s 


 w.p.1 (24)

Likewise, it follows (8) and Part 1, that:

   * ( ) sin ( ) ( )sin ( )k k k k k kUS G j t s t          (25)

Finally, from (14), (18), (19) and (25), it is readily seen that:

ˆ ( ) ( )M k kM
G j G j 


 w.p.1 (26a)

ˆ ( ) ( )M k kM
   


 w.p.1 (26b)

This completes the proof of Proposition 2.

V.CONCLUSION

We have developed a new frequency identification method

to deal with Wiener-Hammerstein systems; the identification
problem is addressed in presence of hard nonlinearity and two
linear subsystems of structure entirely unknown.

Firstly, the hard nonlinearity is determined using the
algorithm established in section III. Then, a frequency-domain
identification method is developed to estimate the product of
modulus gains ( )i kG j and ( )o kG j , as well as sum of the

phases ( )i k  and ( )o k  (at a number of frequencies).
The present study constitutes a significant progress in

frequency-domain identification of block-oriented nonlinear
system identification. The originality of the present study lies
in the fact that the system is not necessarily parametric and of
structure totally unknown. Another feature of the method is the
fact that the exciting signals are easily generated and the
estimation algorithms can be simply implemented.

It is interesting to point that the estimation of linear
subsystem and nonlinearities are performed separately.
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